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Executive Summary

L

The five manuscripts reproduced in this progress report

cover the research of the Principal Investigator, Dr. Dan

Jﬁf‘ﬂ

Shechtman, and his collaborators under the DARPA/ONR

= |

sponsored research program on icosahedral quazicrystals

formed by rapid solidification of alloys. First,

St

microscopic evidence for quasi-periodicity in an alloy with

long-range icosahedral order is presented. Local 5-fold

P

rotational axes are observed to be uniformly distributed

down to the atomic scale, Twinning and modulated structures

B

are ruled out based on the experimental data.
*In a high ;esolutlon electron microscopy study on
h\ Wy g\:‘ O 580
rapidly solidified A16Mn alloy rlbbons the relevant

characteristics of quasi-periodicity were demonstratedr The

particular topological properties of such a periodic network

= EE TR

are best observed by direct imaging of the quasi-lattice in

the electron microscope.

ag

The indexing of icosahedral quasiperiodic crystals is

described by Cahn, Shechtman and Gratias'including the step

E} necessary to prove, by diffraction, that an object is
quasiperiodic. Various coordinate systems are discussed and

&; an explanation is given for choosing one aligned with a set

- of three orthogonal two-fold axes. Using this coordinate

g; systew the main crystallographic projections are presented

ﬁﬁ and several analyzed single-crystal electron Jiffraction

patterns are demonstrated.
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ﬁ In another manuscript Sheéhtman provideéféxperimental
1 & evidence for qﬁasiperiodic crystals}; The experiments

3 o include various diffraction techniques for studying the

7E& long-range order as well as the methods to determine the

@ local atomic order. The diffraction pattern has well defined

sharp peaks and fivefold rotational symmetry and the

crystals, in differefit orientations, have more of these five

fold diffraction p’atterns. The lattice imaging technique

e

was used extensively to study lattice defects. The

technique can be used to detect the fine structure of

i)

dislocation cores and microtwin boundaries. No boundaries

X

! were seen /in the samples under investigation while the

quasipeTriodic sequence of planes is clearly visible.

d <'Neutlron diffraction was used by Mozer, Cahn, Gratias
}N 3 and Shechtman to investigate the icosahedral phase of
“,é X aluminum-manganese alloys. All the peaks appear at the
! E angles in agreement with the icosahedral indexing with a

six-dimensional cubic lattice parameter of approximately

'q
éﬂv 0.65 mm. that decreased with increasing Mn content.

W

“The research results furnish additional strong

=]
AT

3 documentation for the existence of the icosahedral

A

quasicrystals. A variety of characterization techniques are

Al

described and the experimental data is analyzed and

L lal 2 Gl

A explained. The work advances our knowledge and

understanding of quasicrystals and their relationship to

PO

2V e%e a'n
5
3

'k
)

chemical composition and solidification conditions./'

4
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S MICROSCOFIC BEVIDENCE FOR QUASI-FERIQDICITY I1i & SOLID
\
|
}! : HITH LONG-RANGE [C0SAHEDFRAL CRDEF.
Abstract:

Iy

ﬁ

U
‘ - High resolutiaon glectron microccapy 1rnages  of an
e

k

ot tcosahedral =zolid reveal many of the immportant geometrical

characteristice of quasi-pericdicity, In addi tion, the

=

local S-fold rotational axes are seen to be uniformly

distributed down to the atomic scale; we find no evidence of

an underlying 32-dimensional lattice, thereby ruling out the

m
==

hypotneces of microtwinning and modulated structures

.

.
e

D. SHECHTMSN  Depar trment  of Materials Engqineering,

=

lsrael

Institut of Technology, Techniorn, 32000 HAIFe ISRAEL and
Materials Science and Engineering Department, Johns Hopkins
University, Faltimore, Maryiand 21218, U.S.A.

D. GRATIAS CLE.C.M./C.N.R.S, 1= rue G. Urbain 94400

e
L=

VITRY, FRA&NCE

o

gg Joo W, CaHM Center foar Materials Science, National

- Bureau of

[#)]

tandards, GAITHERSBURG, MD 20899, U.S.kn.

ﬁ C.R. BAcad. Sci. Paris, T300, Series II, No. 18, 909.14 (1985) .
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We recentl, reported (1,2) the exictence of 5 metallic

celid with lang-ranQes  corientaticrnal corder which produce:
sharp dxffra;txon like & crystal, but whoce point graup
(icosahed%al m3S) e tnconsistent  with any tranclation
symmetry  an 2-dimensiconal cpace. Discrete diffraction
resulte not only fraom <ctrict peri1odicity but from & more
renersl - and lecss restrictive property called the
"quacsi-periodicity” (ar "almost-periodicity "), Structures
which are quasi-periodic may exhibit any kind of point
symmetry 1ncluding five-fold syrmrmetr »y(4,3,6,7).In thiz rote,
We present experimental evidence that the alloy AlcMn
raprdly colidified is indeed = Quacst! -periodic 1cosahedr al
solid and thereby rule out cseveral alternate proposals  such
gs microtwinning () and 1ncommencurate modulated ctructures
(2. Our conclusicns are baced on the cole hypothesie that
high recolution 1mages in electran micrascopy chow the same
topological properties as the projected potential of the

Structure,

The observationse were made on & rapirdly <colidified
ribbon of the composition Al-14.3 z27¢ Mn. Electron
rmicroscopy was performed on & JEOL 200Cx microcscope  equiped
Wwith a wultra-iti3dh resolution polar piece and = qohlometer
stage. Shown on Figure 1 is & sinale high recclution 1mmage
criented along E] five-fald axie, the corresponding
diffraction pattern and the optical Fourier transform of the

image. The indexing of the diffraction pattern requires the

L - . e TR T AT T B PR
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introduction  of =1 indices, two  per independent  untt

vectoercs,the fiert ones a&c

t

[0}

ccriated with 1nteqger length, the
second one With the 1rratiornal length corresponding  to  the
30lde mean ( (T=1.6180324...),an algebraic irraticonal
number equal to ZcesTL/S and therefore divectly 1nduced by
the filve-fold cymmetyy (10). & diccrete Fourier cpectrum
with & finite number of integer indices but greater than the
dimensionality defines a structure to be quacsi-periodic(l).,
An important property of the quacsi-periodicity recsulte 1in
the unusual pragreczing of the intencities of the
reflections. More &~d moere 1ntense reflections occur at
distances n+m T 1n which m’n are the succeszzive coenverqgent
approximants of T . The qecometrical properties of
Quacsipericdic patterns have extensively ctudied these last
vears (for & general <curvey of apericdic tilingz cee
reference 11): rigouraus algebraic derivatizns are  now
proepoced (12,13,14) which generalize the original FPenrcose
tiling=z  (4), ALl patterns of fiwe-fold zummetry exhibi t
eccential characteristice like Fibonacc: cequences and
invariance through homothetic multiplicaticon by the qalden

mearn .

The high resclution 1mage has indeed all the ecszentiasl
properties of & two-dimensional generalized Penrose tiling:
shart Fibenacci sequences of two fundamental lengthc related
by the golden rmean are identified both in the spacing of

rows and in the spacing of bright spots within rowes; alca
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scales of nath. Th 1€ particularily clesr far pentagons
of brigh. spots which i1nterpenetrate at larger and larger
scales. élphough therve 1€ no strict periodicrty, zny finlte
festure an the micrograph is found repeated and oriented the
camne way at some finite (but not cancstant!) dicstance, This
property - constitutes the ecscence of quasi-periodic patterncs
which are the" moet pericdic" amonq the aperiodic patterns.
We therefcre conclude that we arc seeing in Figure 1 &

projection along & five-foald axise of a3 quasi-nericdic

3-dimencional <ctructure with 1cosahedral csymmetry. This

conclusilon 1€ consistent with the recent 1lluminating
mathematical derivation of Katz and Duneau (14) who
demconcstrated that the cuts along =1l F1gh SYmmEtY v
orlientations (two-, three- and five-fold axecs) of an
1icoeshiedral qQuaci-lattice are 1ndeed Z-dimencional
quasli-lattices. A complete report of the 1maging of all

high symmetry zones in high recolution microscopy will ke

publicshed elsewhere (15).

The structural homogeneity of the icosshedral phace

th

dowrn to the atomic <ccale definitely contradicts the
hypothesics of microtwinning in  the <ense 1n  which this
concept 1¢ comfmonly used. [T microtwinning i< redefined to
include twinning of & <i1ze below the resclution af thies
micrascope, the concept will have acquired a new meaning,

whi1ch would raise more questions than 1t would <clve., [t

CROD AL R A U AU U L ST L L MM L i D T, (MDA ]



D'*\t
;‘\.
0

B

T T BN AT b T e e T b T b L e o B b MO B R M e e B e e 1 L W e BTN e b e e WY 5 L A

wiould  gri1ll  have ro esplaln the lang rang3e orientational

order, the typvcal Faiboraccl cequences, the spatial

self-similarity, as well as the unucsual diffraction
intencs1ties which are pertfectly well reproduced 1n
kirnematical calculations ba

(12,14,15) .

"

ed on quasl-peri1cdici ty

Weak beam electran microccopy does reveal = mottling :n
the Snin  ranqge. This has been interpreted ac evidence for
the preszence of micrecrystals and hence of twinning  (2);
from our high resolution study we attribute this contract
mottling to the local wariaviene af strz.msy this ¢
confilrmed by & continuous tilting experiment in  the
microescope: the bright area in dark field images move
csmaothly with no disconmtinulty.

& more cubtie problem 1¢ the distincticon betiseen thic
structure and 1ncommensutrately modulated <structures. We
found no evidence of =n underlying lattice 1n direct <pace
which 1¢ consi1€tent, 1n the reciprocal space, Wwith the fact
that the diffraction pattern can not be partiticned into

"main" and catellirte" reflectione., ~ke far as  the
mathemastical aspects are concerned, any quasi-pericdic
function, including one with (c2ocsahedral symmetry, may be
regarded ac the diazgoenal cut of & purely pericdic functicon

of N wvariables where N i1s the dimencsion of the algebraic

bace (here N=3x2). daccordingly, Janner and Janccen (16)
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Fave choun that J-modules in Wodimencionz 13 are the
natural extencion of the notion of crycstal., &t that point
1t seems uUseful LG propoce & scheme far clacssification of
crystale.,

A general diaqonal cut will produce  an 1ncommensurate
phase with 1rraticrnal indices. The incommencsuration varies
with the angle of the cut, In real crystale, the

incommensuration varies Wwith temperature and composition and

alwayes resulte in a lowering of symmetry.

Special cuts give rise to higher svmmetriec: thie 1¢

the cacse for crientations of tihe N-dimensiconal space which

n

correcspond to 1scolated trata: as a result the
incommensuration 1¢ locked to 3 fixed cut angle and canncot
vary Wwith temperature and compoesition. This i€ the cace for
the 1cocsahedral phase which, 1n fact, carresponds tc 3
epecial cuc of 3 €-dimencsiconal cimple cubic (10,14): Thece
specral properties cet the 1cocsahedral phace 1nto 3
particular class of modulated <structurec, the one that
carrespands  to 1csclated cstrata whose little groupe do not
belong to the 32 crystallographic point groupe: the
icosshedrasl phase 15 & "cspecial point” long range ordered
phase with noncrystalloegraphic little group. Thie analyeics
cuggests that the 1cosahedyal phase could be a ST BLE phace
under certain conditions of composition temperature and

pressure exactly like usual cryetalline phases,

> LAY
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Figure Captiong

Figure 1: (&) Electron diffraction of the S-fold

(1T 0) zone axic.

(BYCorrecsponding high resclution 1mage.

(c)Qprtical Fourier transform of (b)) showing

the resteration of the five-fold symmetry.
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High Resolution Electron Microscopy

v — o mm e mm e v A M - e - = = mm = m m m —— — —— — ————— — ——

R. Portier(l), D. Shechtman(2), D. Gratias(l), J. Bigot(1l)
and J.W. Cahn(3).
(1) C.E.C.M./C.N.R.S. 15,rue G. Urbain %4400-Vitry/France.
(2) Dept of Mat. Eng., Israel Institut of Technology,
Technion, 32000 HAIFA, Israel.

Dept. of Materials Science and Engineering, Johns Hopkins

University, Baltimore, Maryland U.S.A.

(3) Center of Mat. Sci., N.BR.S., Gaithersburg, MD-20899,

U.S.A.

Introduction.

Some rapidly solidified binary and ternary alloys
exhibit a long range ordered structure with no translational
periodicity (Shechtman et al 1984, 1985,2hang et al to
appear) but with a discrete Fourier spectrum characteristic
of Almost-periodicity (Besicovith 1932). These have been
recently called ‘'"quasi-crystals" ( Levine et al 1985) and
can be described by the Cut and Projection Method (C.P.M.)
(Duneau et al 1985, Elser to appear, Kalugin et al 1985)
which is a generalized discrete version of the earlier
hyperspace description used for continuous density functions
of incommensurate structures (Janssen et al 1984). The
particular topological properties of such aperiodic networks
are best observed by direct imaging of the quasi-lattice in
the electron microscope. It is shown here that the relevant
characteristics of quasi-periodicity are present in the
images which can be interpreted independently from the
actual organization of the atomic species within the
quasi-periodic framework.

Experimental.

The observations reported here were made on rapidly
solidified ribbons of the Al6Mn alloy. Electron microscopy
was performed on a JEOL 200CX provided with the Cs=lmm pole
piece and the + 10° goniometer stage. The HR images along
a five-fold axis are shown on Fig.1l for different defocus
values and objective apertures .Although the images show no
rigourous five-fold symmetry (only the Patterson of the
structure does show an exact icosahedral symmetry) numerous
homogeneously distributed pentagons and decagons are
observed at atomic scale. White dots in Fig.l-a fit
remarkably well with the simple projection of the
quasi-lattice generated by C.P.M.; this is cenfirmed by
Fig.2 which corresponds to the very important two-fold
orientation.

J. Spectroscopie et Microscopie Electronique, 10, No. 2, 107-16 (1985).
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Figure 1: (a) 5-fold orientation at -90 Nm defocus
@ with 0.08 Nm objective aperture. (b) -170Nm defocus, same

5 aperture.

ot
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Figure 1: (c) S5-fold orientation at -150 Nm defocus

with 0.03 Nm objective aperture.
Figure 2: 2-fold orientation at -50 Nm defocus with

0.05 Nm aperture.
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Here too,the projected quasi-lattice nodes and
intensity modulations of the 1images correspond: neither
dynamical effects nor phase-changes due to aberrations can
modify the intrinsic topology of the 1images. The unit
length of the edge of the elementary rhombohedra ( Mackay
1982, Kramer et al 1984) constituting the basic tiles for
aperiodic space filling is .46 nm; this parameter gives a
unit length of .65 nm for the 6-dimensionnal primitive
hypercubic generating lattice. These values strongly
suggest that the actual structure contains certainly more
than one atom per unit cell; not only some of the Al-Mn
distances 1in the wusual crystalline phases are known to be
abnormally short (Cooper et al 1966) but the intrinsic
volumes of the rhombohedra are far too 1large to be
consistent with the experimental density (Kelton et al 1985)
if occupied by a single atom (an average of 4 atoms is
expected). From the strict mathematical point of view, the
CmPri . is not able to make any distinction between any two
homothetic quasi-lattices which are in the ratio T3 (where

T 1is the golden mean). This property is directly observed
in both diffractions and images of the two-fold orientation
/see Portier et al 1985 for a detailed discussion/ whereas
an apparent t scaling 1is observed on the five-fold
orientation.

Convergent Beam Patterns of the different principal
orientations all show an uniform contrast within the discs.
This effect might be explained by the fact that the
reciprocal quasi-lattice being a dense Z-modulus (see
below), each intensity within the discs results from an
infinite number of contributions of diffracted beams. An
additional plausible explanation is the fact that actual
gquasi-crystals have a short correlation length (Bancel et al
1985) due to an imperfect quasi-periodicity in the material
which would weaken the effect of the excitation parameters
in the dynamical diffraction.

Discussion.

The very challenging problem which has to be solved is
the description of the atomic structure. Electron
microscopy is considered as being a suitable tool for
collecting informations about the positions of the atoms and
some models (Hiraga et al 1985, Guyot et al 1985, Knowles et
al 1985) have already been proposed based mostly on only the

five-fold orientation. There 7 however, serious
difficulties in interpreting mages: the dynamical
calculations depend «rucially > number of allowed
diffracted beams (Cornier et al issue) which, contrary
to the case of crystals, form a dense set. The so-called

“smal’ divisor" problem (Belissard 1982) in the almost
periodic diffraction Hamiltonian makes the perturbation
cxpansion diverge, leading to approximate solutions which
are critically dependent on the chosen cut-off (Cornier et
al this 1issue) . For an optimal cut-off, the simulated

R DR OO NN O OO M o Lt 0L ol Ml L O P L SN DA N e W O e P g Pt

-

vl



o L o L L e e R b o e T e L L A L T AT b P T T R AT S K M)

T SR WR PR E o 2w

dynamical images of a simple quasi-lattice with an average
atom at each quasi-lattice node fit remarkably well the
experimental ones (Cornier et al this 1issue). Hence, HR
images of relatively close packed structures are essentially
governed by the topology of the lattice and are quite
insensitive to the atomic motif. Indeed, a specific result
of the C.P.M. is that the Fourier components of the
potential are multiplied by the Fourier transform of a
generic cut function which does not depend on the atomic
species. This term 1is so predominant that chemically
different icosahedral phases -like those in Shechtman et al
1985 , Zhang et al 1985- do show very similar intensity
distributions although they are constituted of different
atoms. These reasons show that HR microscopy will be of
limited use for the structure determination of metallic
quasi-crystals.
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Indexing of icosahedral quasiperiodic crystals
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Since the definition of quasiperiodicity is intimately connected to the indexing of a Fourier
transform, for the case of an icosahedral solid, the step necessary to prove, using diffraction, that
an object is quasiperiodic, is described. Various coordinate systems are discussed and reasons are
given for choosing one aligned with a set of three orthogonal two-fold axes. Based on this
coordinate system, the main crystallographic projections are presented and several analyzed
single-crystal electron diffraction patterns are demonstrated. The extinction rules for three of
the five icosahedral Bravais quasilattices are compared, and some simple relationships with the
six-dimensional cut and projection crystallography are derived. This analysis leads to a simple
application for indexing powder diffraction patterns.

I. INTRODUCTION

The recent discovery of Shechtmanite,"* a metallic
phase with long-range icosahedral orientational sym-
metry and experimentally discrete diffraction patterns,
has revealed a new class of ordered structures. The ico-
sahedral symmetry is inconsistent with strict crystallo-
graphic periodicity, yet discrete diffraction implies qua-
siperiodicity. Schechtmanite is thus cited as an example
of a quasiperiodic crystal or guasicrystal, for short.
Since the two icosahedral groups are not part of the 32
crystallographic point groups, the pessibility exists that
any of the infinity of noncrystallographic point groups
will be observed. Indeed, claims that specimens exhibit-
ing two other point groups, decagonal 1J/m (Ref. 3)
and duodecagonal 12 (Ref. 4), have since been report-
ed.

These quasicrystalline phases present challenging
problems in crystallography. In this paper the mundane
housekeeping problems of coordinate systems, index-
ing, and extinction rules that are the essential language
of reporting experimental observations will be dis-
cussed. Indexing is not just a housekeeping procedure: it
1s an essential part of proving that a structure is periodic,
quastperiodic, or almost periodic. We will concentrate
on the icosahedral phases and the three-dimensional
aspects of descriptions that are most easily derived in
higher dimensions.

*' Present address: Cenver for Materials Research, The Johns Hopkins
University, Baltimore, MD 21218; also a guest worker at the Na-
tional Bureau of Standards, Gaithersburg, MD 20899.

Il. QUASIPERIODICITY

The Fourier transform of a periodic function isa set
of delta functions that are periodically spaced and, in
general, vary in magnitude. Diffraction gives informa-
tion in the form of a Fourier transform of the correla-
tions of an object. If the object is a periodic crystal, the
diffraction pattern is a discrete set of spots of varying
intensity that are positioned on a reciprocal lattice.
Three reciprocal lattice vectors form a basis to locate
any spot in a three-dimensional reciprocal space.

A mathematical function is quasiperiodic by defini-
tion if its Fourier transform is a set of delta functions
that are not uniformly spaced as they would be for a
periodic function, but whose spacing can be described
by a finite set of lengths.® If an infinite number of lengths
are required the function is cclled almost periodic.
Therefore specimens that give countable diffraction
spots that cannot be indexed with three reciprocal lat-
tice vectors are quasiperiodic if they can be indexed with
a finite set.

It has been shown that any D-dimensional quasiper-
iodic function requiring a basis of N vectors can be con-
sidered to be derived from a periodic N-dimensional
function cut by a D-dimensional plane.’ If every spot in
the diffraction pattern can be indexed using a combina-
tion of NV reciprocal lattice vectors, then the object that
gave this diffraction pattern can be represented by a cut
of a N-dimensional periodic object.

The icosahedral point group is not consistent with
translational periodicity. The icosahedral diffraction
pattern cannot consist of periodically spaced spots. If

J. Mater. Res. 1 (1), Jan/Feb 1986 0003-6951/86/010013-14%01.75 © 1986 Materials Research Society 13
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Cahn, Shechtman, and Gratias: indexing of icosahedral quasiperiodic crystais

the diffraction pattern consists of discrete spots rhat can
be indexed by a finite number of basis vectors it is quasi-
periodic.

Several papers have already discussed ways of de-
riving quasiperiodic structures from cuts of periodic
higher dimensional structures®'® including icosahedral
structures. The converse problem of taking a particular
diffraction pattern and indexing it has been attempted''
in a way that has been criticized.'>'> The prok:i:im
centers on the fact that with a combination of incorm-
mensurate lengths any spot can be located approximate-
ly with any desired degree of accuracy. We will show
that with our indexing, the observed high-intensity
spots form a simple sequence in which none are missing
and none left out.

iil. COORDINATE SYSTEMS

Taking basis vectors along important symmetry di-
rections simplifies the crystallographic formulation.
For any group with a unique rotation axis, the z axis is
taken parallel to that axis. This is the proper choice for
the crystallographic groups such as hexagonal and the
noncrystallographic groups such as decagonal. The ico-
sahedral groups have 6 fivefold axes, 10 threefold axes,
and 15 twofold axes. Taking one of the fivefold axes as
the z axis (Fig. 1) leaves the other five in a ring 63.43°
from this axis. Although these all would make acute
angles with the z axis, there are obtuse angles between
some of them. There is no choice of sign for the six axes
that would give equal angles between all of them. A co-

0/1 10 111

171 017 110

111 047 10 "

0/0 0/0 0/2

or1 170 1/1

(V- BTAN: A

LR A AT TA T

o/1 110 113 ‘ ‘

oM 1z an

oM oz 0o

¥

17 011 110

10 041 0/

0/1 140 11

FIG. 1. The stereographic projection of the principal symmetry directions and mirror planes of the icosahedral group m33 as seen along the
fivefold direction. The number indicates the indexing system that will be described later in the text.
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ordinate system based on these axes is not only skewed
but encounters the difficulty of keeping track of obtuse
and acute angles. There are right angles between a five-
fold avis and five of the twofold axes, that could serve as
a coordinate system when comparing the icosahedral
phase with the decagonal phase.

If we examine the icosahedral group with a three-
fold axis along z (Fig. 2), we have three choices of coor-
dinate systems that are related to familiar crystallogra-
phic ones. The 6 fivefold axes riow fall into two groups,
either of which could be used as a rhombohedral basis.
In one set the fivefold axes make acute angles with each
other. In the other set the angles are obtuse. A hexagon-
al coordinate system could be based on the threefold
axis and the three twofold axes at right angles to it. Cf
special interest are the three twofold axes at 71° from z
that form an orthogonal set.

o/1 1r0 11

Bio Tia 053N

/

o

u: ol B

e

N\

or1 170 117

Br1 G50 100

zone of 0/0 1/2 0/1
3-fold

ITARR FARRTE]

The simplest system is a cubic coordinate system in
which the axes of the coordinate system are aligned with
aset of three orthogonal twofold axes of the icosahedral
group (Fig. 3). The 15 twofold axes fall in five suck ssts
all equivalent to each other through the operation of a
fivefold axis. This is the coordinate system used in the
International Tables of Crystallography, and it is the
coordinate system we will use, even tc¢ Jescribe the other
coordinate systems. It has all advantages of orthogonal
axes.

The three coordinate systems discussed here are all
based on subgroups of the icosahedral group, as shown
in Fig. 4. Using a coordinate cystem based on a lower
symmetry than icosahedral, requires special attention
for the icosahedral symmetries not used in that coordi-
nate system: equivalent reflections will not necessarily
have similar indices.

@it 14 10

I.IT 0/t 110

1o art 0/0

\ Ny
-if zone of 0/0 0/0 072
. 00 B2 oo, |I-' 2-fold

Wai0 0/t 00 ‘ J'III
!

ore 1 o |

- |
AR TA]
\

S NP

: zone of 0/0 1/0 0/1
5-fold

FIG. 2. The stereographic projection of the icosahedral group m35 as se=n along a threefold direction. Note the possibility of a rhombohedral
coordinate system using either set of fivefold axes, a hexagonal coordinate system using the twofold axes along the equator or the three twofold
axes at 71° The thickened great circles show the three zone axes of the diffraction pattern indexed in Figs. 5-7, namely the twofold labeled
[0/01/00/1}, the fivefold labeled {0/0 1/0 0/1) and the threefold axis labeled [0/0 1/20/1].
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0s7 0/0 0/0

712 os7 0/0

170 0/7 o/0 B8 b8 7/0 0/1 0/0

0/0 0/2 0/0

0/0 0/2 0/0

v TIT o

= me - 1/0 0/1 0/0
By 040 10
‘ 16 QdY Ao
172 017 /o 03 oo 0o ¥ 112 001 0

FIG. 3. The standasd stereographic projection for the icosahedral group aligns the axes of an orthogonal coordinate system with one of the five sets
of mutually perpendicular twofold axes. Note that four of the threefold axes are along the (111) directions.

Order of Decagonal / icosahedral Cubic Rhombo
Group Pentaqonal hedral
120 m35

60
48

40 F1G. 4. The maximal subgroups of the ico-

sahedral group m35 and the decagonal
group 10/mmm.
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IV. THE CUBIC COORDINATE SYSTEM

Having selected a coordinate system aligned along
three perpendicular twofold axes, we need to describe
vectors and planes in both the direct and reciprocal
spaces. An immediate advantage of the choice of a cubic
coordinate system is that the indiccs of a piane and the
direction normal to it are the same. We define unit
lengths @ and a* in both spaces and dimensionless
lengths and position in terms of these. Consider a posi-
tion (UVW) or a plane (HKL). The set of all positions
or planes equivalent through the operations of the icosa-
hedral groups (235) and m35 1s as follows:

1. The threefold axes give cyclic permutation, but
note that while (UVW), (WUV), and (VWU) are equi-
valent, (VUW), etc., is different.

2. The twofold axes give pairs of sign changes, the
mirrors give individual sign changes. Thus for 235,
(UVW), ( UVW) (UVW) and (UVW) are equivalent
but (UVW), etc., is not. For m35 all sign changes are
equivalent positions.

3. The fivefold axes introduce a change of the mag-

nitude of U, ¥, and W and introduce the golden section .

7=2c0s 36" = (1 +5)/2 = 1.618 034. Because the
International Tables have a misprint in the rotation ma-
trices, we repeat them here in Table I, using their nota-

tionG = 7/2,g = 1/2r = G — 1/2. Performing the ma-
trix multiplication we obtain
(HKL)Y

=(H-K)+7(K-L),
(L—H)+r(H+K),
—(K+L) + (L + H). (1)

In this multiplication we makz frequent use of the iden-
tities

?=14+r, (2)
Ur=r1-1, (3)
G+ + (=1 (4)

TABLE I. Matrices for fivefold rotation about 1 7 0].

[t may at first seem surprising that equivalent posi-
tions turn out to have designations with different nu-
merical values of the components, but this is unavoid-
able with a Cartesian coordinate system and groups
with such a high symzaetry. The most symmetric crys-
tallographic group m3m has order 48. It has 48 unit
triangles. Taking all the permutations and sign changes
of (UVW) generates 48 equivalent general positions,
one iri each unit triangle. It is impossible to generate the
60 or 120 equivalent positions needed (resp. for 235 or
m35) with just three symbols. Thus, the choice of a cu-
bic coordinate system results in the possibility that as
many as five different sets of indices may be necessary to
represent equivalent positions or planes.

Now consider a plane or reciprocal space position
with an index of the form

(h+h'rk+k'rl+1'7),
that is, where
H=h+h'r, K=k+k'r, L=1+1'r,
in which the 4, 4", k, k', 1, and "' are all integers. We
introduce the six-index notation (h/h’, k/k’, 1/1")
or (h/h' k/k'1/1") to designate such a reflection.
Operation of the fivcfold rotation will change the
numerical value of the six integers.
(h+h'rk+k'rl+1'7)Y
=lh+k")—(k+1")
+r[(=14+h")+ (k—=1],
(—h+kY+U+h")
+rl(h4+k) + (k+1"],
(—k+IY+U+h)
+7lth—kY+U+hD]). (5)
In order for this to be a close set, we imposc the
parity conditions that the three sums & + k "k +1', and

{ + h'are even: after fivefold rotation the six integer in-
dices remain integers and the parity rules are conserved.

V’=v?=| ¢ i g
Vo —¢ -G

= (V5 + 1)/4 = 7/2 = cos 36" = 0.809017
g=(/5—~1)/4=1/2r=G -} =cos 72" = 0.309017

¥ =l
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‘ij , ‘Finding that all spots in the diffraction pattern are of We can thus ccnvert from the six-dimensional vec-
A -"E' this form implies quasiperiodicity. tor (n. 75, N4, ny, ng, Ng) to the six-index three-dimen-
:: W We next turn to the indexing of the principal direc-  sional vector (A/h', k/k’, 1 /1").
_:: tions (Fig§. 1—3).‘Tl?csix ﬁvcfolfi axes are all of the form h=n,—ny h'=n,+ns
(170), or in the six-index notation (1/00/1 0/0). k )
| E The ten threefold axes have two different designa- =ny—ne k'=n +n, (9a)
‘j‘% tions: four are along (111) or (1/0 1/0 1/0) and six I=ny—ng, I'=ny+n,,
\5 ¥ zlongb(e: 1 (1)1) or (1/11/0 01/0). N?e that both vectors .14 vice versa
e N ave n chosen to have a length 3. i
4] = = - J
2 i Three of the twofold axes are along the cube axes. 21, =h+k', 2ng b P
The remaining 12 have the form (G, g,4) or (0/11/1 1/ y=1+h', 2n5= —14+F', (9b)
S 0). My=k+1', Mg= —k+1".
: V. RECIPROCAL QUASILATTICES The form of Eq. (9b) demonstrates that Q in the six-

Consider a quasilattice in three-dimensional reci-  index notation obeys the parity rules. I'hese restrictions

pfanetalialal: oL o N S e

% procal space in which every spot occurs as a sum of  O0 the indices are extinction rules and are given in Table
3,8 integer multiples of a finite number (greater than three) IT under the heading of the P quasilattice (to be defined
of vectors. We will compare two lattices formed only of ~ 1ater)- ) _ N
W equivalent vectors. In particular, let us first take the six Th“e_ paiity fule‘s lead to four kinds of positicns:
b vectors along the fivefold axes, ‘¢ L. six even ‘udices,
6 2. four even indices (odd/even, even/odd, even/
2 Q= > ngq, (6) even),
LN i= T
d & where the n, are intsgers and the q, are (170) which in = %‘(’i ;"“’ A 6o eTIY/ o s ORiel feven S/
the six-index notation is 4. six odd indices.
" q, = (1/00/10/0), _ o
,;'» If the coordinates of a spot (HKL) that is consistent
o 4, = (0/10/01/0), ; with the parity rules are multiplied by 7, the results are
05 = (OAOL/ 071, & (rH K 7L) = (h'/(h+ k') k /(k+ k"),
m’ q, = (1/00/1 0/0), g -
- ’ + ! .
as = (0/10/0 1/0), !

= Only if the original (HKL) = (h/h’' k/k’ 1/1")
q=H0/D 7007 1): ‘ ) ‘ ~ contains two or six even indices, will (7H 7K L) sa-

(There are 384 ways for choosing the ¢, ’s. All give equi- gy the parity rules. On the other hand, scaling by 7

valent results. The chcice of the set (7) corresponds to , ,

th . two rhombohedral bases: q,, q,, q; define the acute (PHPKTL) =((h+ 2h' )/ (2h + 3h, ),

rhombohedron and q,, qs, q¢ the obtuse one (see Fiy. (k +2k")/(2k + 3k'),

2).] The set of six numbers (7, ) can be considered an (+20')/21+31")) (11)

i Rt B XX Y X ¥y T
=X

N indexing of Q, and has been used in a number of papers.

0 Q) This same set can also be considerf:d to be a six-dimen-  preserves the parity rules for all (HKL) that satisfy
0 ol sional lattice vector. To express Qin terms of the three-  them. These scaling rules are tabulated for the primitive
‘I dimensional cubic coordinates we substitute set (7) in  (P) reciprocal quasilattice in Table III.

! . Eq. (6) and perform the summation, In addition, the square of Q is of the fcrm

. ‘f-:: Q =((ny —ny)/(ny+ns), (ny —ng)/(ny +ny), Q*=N + Mr, (12)
; . (ny —ns)/(ny + ng)). (8)  where using Egs. (2) and (3),

\:,f' TABLE II. Extinction rules fr reciprocal quasilattices.
{a
F(2a*) I(2a*)
P(a*) direct lattice is /(a) direct lattice is F(a)
WY
E:‘ h+k'=2n same as P* plus all even plus
- HKL k+1=2n h+k+1=2n h+l+h +k =dn
[+ h'=2n (h'+k'+1"=2n) h+k+1l'+k'=4dn

(U+k+h +1" =4n)

n, all integers Ir,=2n all even or all odd

LU N
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TABLE III. Parity and scaling properties for the £ and F reciprocal
quasilattices.

Parity of Q*=N+™
indexes  Scaling P F N M
sixeven 7 Present  Present 4n 4m
foureven 3 Present Absent 4n+2 4m+1
twoeven 7 Present  Present 4n 4m
sixodd r° Present Absent 4242 4m+1

6
=2¥ni=hl+h?+kP+k?+1° 417 (13)

1=1
M=h?+k?4+17+2(hh" +kk' +11"). (14)

Equation (13) indicates that M, the integer part of 0 2, is
twice the square of the length of the six-dimensional n
vector and therefore must be even. Because ot the parity
rules, if N is divisible by 4, M also is divisit-le by 4, and if
N is not divisible by 4, M is of the form 4m + 1. In
addition, as we will show later, M conforms to the limits

—~N/r<M <Nt (15)

and that the most intense reflections occur for the lar-
gest value of M, which we shall denote by M. For ¥
divisible by 4

M,=4L(Nr)/a], (16)

where L x J is the largest integer in x.
When N is not divisible by 4,

M=4m+ | <N~.
The largest value of the integer m is
my=L(Nr—1)/41
and
My=1+4L(Nr—1)/41. (17
We next define a two-parameter indexing Q(N,r)

Q3(Nr) = N+ Myr —drr,
"=0,l,...<L(N/T+Mo)/4Jv (18)

in which the Q,(V) will turn out to define the sequence
of intense reflections.

Q3(N) =Q*N,0) =N + My(N)r. (19)

The same procedure has been used by us to find the
quasilattice formed from the 15 vectors along the two-
fold axes. The same result is obtained in a simr '=r man-
ner by putting the face-centering restrictions £ on the
six-dimensionai lattice formed by the #,, and then using
Eq. (9a). The result for that and for the body-centered I
lattice are also given in Table II.

In Table III we make a simple comparison between
the P and F which share the same parity rules. It can be
seen that the F lattice scales uy +, and has only N = 4n,
the P lattice comprises, in addition, N = 4n + 2 spots
that scale by . Figure § is a diffraction intensity calcu-
lation using the sphere approximation in the cut and
projection method.®®

VL. INDEXING THE SINGLE QUASICRYSTAL
PATTERNS

Figures 6-8 show the indexing of the electron dif-
fraction patterns of Refs. 1 and 2. The stereographic
projection (Fig. 2) presents the three zone axes of these
diffraction patterns, namely, the [0/0 0/0 0/2] two-
fold, the [0/0 1/00/1] fivefold, and the [0/0 1/2 0/1]
threefold axes. Note that all of the reflections in the five-
fold and threefold zone axis conform to either the Por F
reciprocal quasilattices of Sec. V. These could not be
used to distinguish between the two reciprocal quasilat-
tices.

It is easy to show that the reflections for which
h'+k’ +1"is odd vill appear in neither the five- or

J
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°@®U®®° «0 D 00 ()00 Qo o o - FIG. 5. Diffraction patterns calculated
QO & QD I ° e by the cut and projection method for all
three reciprocal cubic quasilattices with
P(a*) F(2a*) (2a%) the same lattice parameter a* for the
two- and fivefold zone axes.
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W2y S8 243 3/4 3/5 2/3

171 2/31/2 _ 3/5 2/3 1/2
1/3 2/3 1/2

- - [ ] =, =0
0/11/2 1/1 2/3 1/2 1/

s
‘II' ‘II'L/l 172 1/1 "

1/0 141 071 1/2 141 0/1 3/4 1/1 0/7
‘ ®
1/1 0/1 1/0 1/3 0/1 ;,0 3/5 0/1 1/0
L4 -
— 3/3 0/1 1/0
o 2/4 0/0 0/0 4/8 0/0 /0
0/2 0/0 0/0
4/40/00/0

2/2 0/0 0/0

FIG. 6. Indexed diffraction pattern of a 108° sector of the {0/0 1/00/1) zone axis. Sizes of the circles represent calculated intensities based con the
inverse of the distance of a spot in the six-dimensional primitive reciprocal lattice from the cut plane.

s 2/3 1/2 3/5
0/1-LL2 38 4/5 1/2 3/8
° @ - () ® ©
0/0 0/3 2/4
° o ° ) ®
172 141 2/3 . 12 117 213 a/4 /T 2/3 - =
WMo B dus are 1/1 2/3
@ @ o ®
171 001 172 171 0/7 1/2 3/5 0/1 1/2
® 0 ¢
0/7 7/0 171 0/1 T/0 1/1 2/3 1/0 V1 5,5 T/0 171
¢ . ® o
[ ]
0/0 0/0 0/0 2/4 0/0 0/0 4/6 0/0 0/0
0/2 0/0 0/0
4/4 0/0 0/0
2/2 0/0 0/0

FIG. 7. Indexed diffraction pattern of a 120" scctor of the [0/0 1/2 0/1] zone axis.
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0/0 2/4 0/0

2/4 4/8 0/0

2/4 2/4 0/0

4/6 4/6 0/0

4/6 2/4 0/0

or2 274 oyo2!22/4 070
o 3/4 2y
172 273 B 2/3 0/0

1/0 2/3 0/0
9

0/0 2/2 0/0
0/2 2‘2 0/0

2/2 2/2 0/0

1/0 2/1 0/0

® 2/2 0/2 0/0
>0 0/2 070 .

0/2 0/2 0/0

1/2 0/1 0/0
1/0 0/1 0/0

0/0 9/0 0/0
2/2 0/0 0/0

0/2 0/0 0/0

2/4 0/0 0/0

2/4 2/2 0/0

2/4 0/2 0/0
0/1 0/0 3/8 0/1 0/0

3/4 ]
. @ e .
4/6 0/0 0/0

4/4 0/0 0/0
. .

3/6 2/3 0/0

4/8 2/2 0/0

3/4 2/1 0/0
®

FIG. 8. Indexed diffraction pattern of the [0/00/00/2] zone axis. Note the square array made of all even and two-even spots that scale with 7. If
only these spots were present, this pattern would have fourfold symmetry and scale by 7.

threefold zone axes. For example, in order for a reflec-
tion to be in the [0/0 1/0 0/1] zone axis K + 7L = 0.
This implies that & + /' + 7(k"+ [+ 1') =0, which
can only occurif(k + /') = (k' + 1+ !') =0.Adding
the even number &' — [ gives h' + k' + /' =2n. The
same result is obtained with the [111] zone axis. Fitting
the two zone axes alone can not distinguish between P
and F. Indeed the model of Levine and Steinhardt seems
to fit only the three- or fivefold."* In the [0/0 0/0 0/2]
zone axes [ =/"=0,but A +k(and #’'+ k') can be
odd. This gives the spots with two odd indices, that can
be seen in Fig. 7. Spots with six odd indices derive from
these after some fivefold rotations. The twofold zone
axes thus show some spots with 7 scaling.

The twofold zone axis for the F quasilattice show
only spots with 7 scaling and may show an accidental
fourfold symmetry. Permutation of the x and y indices
preserves the parity rules and does not change Q. (see
Sec. VII). If the intensity is only a function of Q. the
pattern will show the fourfold axis.

Observing an icosahedral diffraction pattern in
which all the spots can be indexed with this six index
notation proves that we have a diffraction pattern of a
quasiperiodic structure. In particular the experimental
pattern is not the F or /. Furthermore, because it can be

indexed with six integers, the object can be represented
as a slice and projection of a six-dimensional periodic
structure.

Several other methods of indexing with six numbers
have been successful.!'~'* They have differed from each
other in ways that become significant after we examine
the cuvi and projection method.

VII. THE CUT AND PROJECTION FROM SIX
DIMENSIONS

In three dimensions the six vectors along the five-
fold axes are not orthogonal. We can choose the six-
dimensional cubic space in which each of these vectors is
a basis vector along a hypercube axis that is perpendicu-
lar to all the others. The set of the six numbers #; then
represents a position vector in the six-dimensional cubic
reciprocal lattice, and the equations (8) give the corre-
spondence between positions in the three- and six-di-
mensional spaces. The cut and projection is accom-
plished by rotating the six-dimensional space so that
what will become three axes in the three-dimensional
space are in the cut plane. The six-dimensional rotation
matrix corresponding to the chosen set (7) is

J. Mater. Res., Vol. 1, No. 1, Jan/Feb 1986 21
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1
R=— — o
V22 +71)
[ 1 T 0 -1 T 0]
r 0 1 r 0 -1
0 1 r 0o -1 T
x—r 1 T 1 0
1 0 -—r 1 0 T
L0 -—r 1 0 1 7]
(20)

The three-by-six matrix constituting the top half of
the rotation matrix consists of the six fivefold directions
in three dimensions as column vectors [compare with
Eq. (7)], or the coordinates of the three-dimensional
cube axes in the six-dimensional space as row vectors.
The bottom three by six matrix consists of the comple-
mentary orthogonal space lost by the cut. It consists of
projection directions from six dimensions into the real
space. In the six-dimensional reciprocal space the dis-
tance of a spot from the cut plane is related to its intensi-
ty in the three-dimensional reciprocal space.

There are five Bravais lattices consistent with icosa-
hedral symmetry in six dimensions. '® Three of these are
the P, I, F hypercubic. Consider first the primitive lat-
tice. Its reciprocai iattice is also primitive. Because the
projection of each six-dimensional lattice vector is a
(1/00/10/0) vector along the fivefold axes, the reci-
procal quasilattice observed experimentally to be one
composed of such vectors will be denoted P. The other
lattices in our example correspond to the six-dimension-
al face-centered F and body-centered [ reciprocal lat-
tices F corresponding resp. to / and F direct lattices.

In the P six-dimensional lattice the location of a
spot in the dimensionless units that we have used in
three dimensions is, using Eq. (20):

Qs = V2(1 + ) (ny,nynynunsne). (21)

cul plane

0 (w33 (w,23 (w13 Wl
I]{H,r}——*y

spherical shell

FIG. 9. Two-dimensional representation of the cut and projection
procedure for the raagnitude of Q and the distance from the cut plane

Qt'

As a result, using Eqs. (2) and (13),

Q=22 +7)(n} +nd +n} +nl+ni+nl)
=(24+71)N. (22)

The length of Q, is related to the ;¥ part of the length of Q
(Fig. 9). Since projection shortens Q

0*<Qs%. (23)
Using Eqgs. (12) and (22)

N+Mr<(2+4 1N
Therefore

M<[(l+7)/7]N=1N. (24)

Since 02> 0, we also have
—N/r<M (25)

proving the inequality (15). If we define @, to be the
distance of a spot in the six-dimensional reciprocal space
from the cut plane (Fig. 8), we have

0i=0%-0°
=7r(Nr—M). (26)
Thus the largest M for a given N will have the smallest

QC'

Up to now we have been using a dimensionluss Q.
We introduce a three-dimensional quasilattice constant
d, such that the three-dimensional diffraction vector k
and the interplanar spacing are given by

k=Q/d,, (27)

dh/h', k/k',1/1") =do/YN + 1™ . (28)

The length of the six-dimensional reciprocal lattice con-
stant a¥ is related to d,, by

atdy,=V2(2 +1). (29)

In Table IV we give the values of Q,(N) and the
corresponding Q. that according to theory should be
inversely correlated with intensity. This sequence of Qs
has an obvious beginning (N =2) and using
d, = 1.7466 nm we produce for 0.155 nm radiation two
further columuns, the diffraction vector k and the diffrac-
tion angle 26. Comparing these with our own and pub-
lished powder diffraction data'' indicates a one-to-one
correspondence with this list. The only omissions are
due to overlap with fcc aluminum and low intensities in
the published data.'' The justification for our choice of
d, is to match Table IV with experimental data. The
choice of d, in Ref. 11 was different and this leads to
complications to be discussed.

In Table V we list the Q, (V) series in three different
notations each using six indices. The (n;) and
(h/h' k/k'1/]") are representative of that particular
Q,(N). The six-dimension (n;) vector is that which
projects into the longest possible three-dimensional vec-

22 J. Mater. Res., Vol. 1, No. 1, Jan/Feb 1986
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TABLE IV. Scattering variables for the P lattice.
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(dy = 1.74657)

My (o} Q. d '(nm™') 20
1 3.62 1.90 1.089 9.68
4 10.47 2.00 1.853 16.51
9 20.56 1.07 2.596 23.21
12 27.42 1.24 2.998 26.87
13 31.03 2.27 3.189 28.62
16 37.89 2.35 3.524 31.70
21 47.98 1.64 3.966 35.80
24 54.83 1.75 4239 38.36
29 64.92 0.45 4.613 41.90
32 71.78 0.76 4.850 4.16
33 75.40 2.05 4.971 45.32
36 82.25 2.14 5.192 47.46
41 92.34 1.32 5.502 50.48
44 99.19 1.45 5.702 52.45
45 102.81 2.39 5.805 53.47
48 109.67 2.47 5.996 55.38
53 119.76 1.80 6.265 58.10
56 126.61 1.91 6.442 59.90
61 136.70 0.89 6.694 62.50
64 143.55 1.08 6.860 64.23
65 147.17 2.19 6.946 65.13
68 154.03 2.27 7.105 66.83
73 164.12 1.52 7.334 69.28
76 170.97 1.64 7.486 70.93
77 174.59 2.51 7.565 71.79
84 187.91 0.47 7.848 74.92
85 191.53 1.96 7.923 75.77
88 198.39 2.05 8.064 77.36
93 208,48 17 8.267 79.68
96 215.33 1.32 8.401 81.25
97 218.95 2.32 8.472 82.07
100 225.80 2.40 8.603 83.63
105 235.89 1.70 8.793 85.92
108 242.75 1.81 8.920 87.47
113 252.84 0.65 9.104 89.74
116 259.69 0.90 9.226 91.29
117 263.31 2.10 9.290 92.11
120 270.16 2.19 9.410 93.66
125 280.25 1.40 9.584 95.94
128 287.11 1.53 9 701 97.50
129 290.73 2.44 9.762 98.32
132 297.58 2.52 9.876 99.89
137 307.67 1.87 10.042 102.21
140 314.52 1.97 10.154 103.79
145 324.61 1.00 10315 106.15
148 33147 1.18 10.424 107.77
149 33508 2.24 10.480 108.63
152 341.94 2.32 10.587 110.27
157 352.03 1.59 10.742 112.71
160 358.89 1.71 10.846 114.40
165 368.98 0.25 10.997 116.93
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TABLE V. Various indexing methods for the first 12 strong reflections.

N M, (n;) (h/h"k/k'1/1") multiplicity Ref. 11

5 | (100000 (1/00/10/0) 12 (21711

4 4 (100100 (0/00/20/0) 30 (220071)

6 9 (111000} (/1171 1/ 20 (110001)

(321112)

8 12 (101101) (0/02/2 0/0) 30 (111010)
10 13 (111011 (1/22/10/0) 60 (221020)
12 16 (210010) (2/20/20/0) 60 (31T11T)

(111117 0/2 2/20/0) 12
14 21 (201107 (1/02/30/0) 60 (217001)
(331021)
16 24 (211017) (2/22/20/0) 60 (217701)
18 29 (211117 (1/2 2/30/0) 12 (100000)
[(321002)?]
20 32 (201201) (0/0 2/4 0/0) 30 (110000)
2 33 (211201) (0/12/41/0) 120
24 36 (222000) (2/22/22/2) 20 {220002)
(211217) (0/22/40/0) 60 [(561033)?]

tor, and the two are related by Eq. (9). For powder
pattern intensities the multiplicity of each spot is given.
The sequences of our indexing of course satisfies Eq.
(13) relating ¥V to the sum of squares of indices. As was
noted earlier, the iist'' of powder diffraction angles cor-
relates perfectly with this sequence, with only one omis-
sion in this range.

The last column gives the indexing of Ref. 11. The
fundamental (100000) vector was chosen in Ref. 11 to
have the length of Q,(18). As a result, all smaller reflec-
tions become higher index and the simple monotonic
relation between V and Q of Eq. (13) is lost. Because of
this there is no obvious start to the sequence, and it is
difficult to know if any intense spots are missing. Fur-
thermore, because of the incommensurability one can
approach any angle with arbitrary precision by using
high indices. The two assignments'' labelled with ques-
tion marks are probably such approximations. Tke
question of which vector one chooses as a fundamental
length in this case is uniquely resolved by the sequence
of the intense reflections. Choosing a longer vector leads
to the problems cited above. It will be difficult to choose
ashorter vector, because intensities are likely to be very
low.

We have so far concentrated on the Q, series. Table
V lists representative spots for all the spots that occur
for N = 12 spherical shell in six dimensions (Fig. 9).
Two types of indices sum to N = 12. In six dimensions
there are 2° spots of type (111111) and 2°6!/(2'3!) of
type (211000). Six different iengths result from project-
ing in three dimensions ranging from Q3 = 37.89to Q'
= 5.53. The longer Qs are from six-dimensional vec-
tors nearly parallel to the cut plane; the shorter ones are
from those nearly perpendicular. By themselves the
(n; ) givenoclue about projected length until the projec-

tion has been defined in Eq. (20), but in the cubic in-
dexes the lengths obviously become shorter as the 2’s
shift from primed to unprimed positions and sign differ-
ences appear in the indexes.

The (111111) are high symunetry axes in six dimen-
sions. They project into three dimensions as either
three- or fivefold axes with four different lengths. The
(211000) project onto mirror planes or (110) planes
with six different lengths. In powders the @, (12) reflec-
tion will be a superposition of 72 individual diffraction
spots. These multiplicities are most readily apparent by
forming ratios of the cubic indices and comparing these
with the indexes of the three symmetry axes anc. the
mirror planes.

We hope to have demonstrated that the cubic coor-
dinate system has many advantages over either the skew
coordinate system or the six-dimensional one. In addi-
tion, there is an obvious simplification when a particular
lattice constant is chosen.

VIil. DISCUSSION

Several indexing methods have been introduced
and need to be compared. We have introduced a method
of indexing based on a three-dimensional cubic coordi-
nate system using icosahedral symmetry. Six indexes are
necessary and sufficient, indicating that the icosahedral
solid is quasiperiodic and can be represented as an irra-
tional cut of a six-dimensional periodic solid. Much of
the geometry is developed without recourse to six di-
mensions.

The six-index notation is merely a shorthand for
indexing irrational numbers of the form A + A ‘7. Qrdi-
nary vector addition generates the three-dimensional
diffraction pattern from a single vector replicated by the
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operations of the icosahedral group. There is a single
basic length: the 7/5 rotations introduce the algebraic
number 7 and, therefore, incommensurability. Unlike
other incommensurate structures, in which the incom-
mensurate ratio varies with temperature and composi-
tion, the ratio r is part of fivefold rotation and remains
the same for large changes in composition'* and lattice
parameter and a wide variety of alloy systems. The cubic
coordinate system has many advantages that derive
from an orthogonal coordinate system. It incorporates
the cubic subgroup part of the icosahedral symmetry,
but it leaves the problem of multiple notation for equiva-
lent positions.

The multiple notation is really not a problem. We
have found two convenient methods. For a particular
index, multiplication by the rotation matrices quickly
gives all the other notations for equivalent reflections.
When dealing with a large number of indexed positions,
they are quickly sorted by calculating Q  and sorting by
Nand M (orr). Justas (330) and (411) coincide in bec
powder patterns, this sorting will put nonequivalent
spots in the same (V,7) box. However, since all the spots
in the same (N,r) box originate from the spots in the six-
dimensional reciprocal space that are the same distance
from the cut plane, they are likely to have similar inten-
sities. The other three-dimensional coordinate systems
have skewed axes aligned along equivalent symmetry
axes. They have all the problems of skewed axes includ-
ing the problem that permutation of indices not only
cause length changes but can cause the vector to rotate
to a nonequivalent direction. In the cubic indexing, be-
cause the indices are primed and unprimed, cyclic per-
mutations of (HKL) can only lead to equivalent vec-
tors. Odd permutations do not change the length.

Insix dimensions there is an orthogonal system, but
the rotation matrix that defines the cut plane requires
arbitrary choices of the signs of the fivefold basis vectors
in three dimensions. Thus the various six-dimensional
vectors of type (110000) represented two different
lengths in thiee-dimensions differing by a factor of 7,
depending on the relative orientation with respect to the

TABLE VI. A complete listing of the ¥ = 12 reflections.

cut plane, or equivalently whether the angles between
the various (100000) type (010000) vectors in three
dimension are acute or obtuse.

There is a geometric way of understanding the dis-
crepancy between the various indexing methods. It
might seem that any reflection along the fivefold axis
could serve to define the unit length, but it must satisfy
several criteria. The first is that all other spots must then
be indexable with six integers that obey the parity rules.
The spotz that survive this criterion differ from each
otiier in length by powers of 7. In six dimensions all of
these vectors lie on the same (xyyyyy) fivefold plane.
The shortest distance in this plane is ( 100000) and this
is the one which must be found. Only one of the fivefold
reflections corresponds to this minimum distance and
generates an orthogonal basis in six dimensions. The one
chosen in Ref. 11 happens to be the (211111), which
leads to a skewed six-dimensional basis. This destroys
the hypercubic geometry that is so important to the sim-
plicity of the indexing we have proposed. As a result the
indexing fails to fit the criterion of a simple hierarchy.
There are inifinitely many reflections along the fivefold
axis, both longer and shorter than the one which meets
this criterion. For the P quasilattice, it is the longest
fivefold reflection that is shorter than any intense reflec-
tion in any direction. All shorter reflections are then
projections of longer six-dimensional vectors with long
Q. and weak intensities.

These criteria not only point toa natural and vnique
indexing but solves the important problem of what con-
stitutes the unit reciprocal lattice vector. Comparison of
Table V indicates that while a different choice of this
unit still gives a completely consistent set of indexing,
there is a simplicity and completeness to the choice
based on the strong reflections. The Q, series fits the
observed intense refleciions without omission and, qual-
itatively, is inversely ccrrelated with Q,, the distance
from the cut plane. The next in the sequence (Table VI)
Q3(N,1) = Q3(N) — 47 all have Q. >2y7 which, of
course, is longer than Q. for any of the Q, spots, and are
readily distinguished from the main sequence by their

M (n,) h/h'k/kL/T Multiplicity
Q(12) 16 (210010) (2/20/20/0) 60
(1111T) (0/22/20/0) 12
Q12,1 12 (1 (0/20/20/2) 20
(201001) (2/02/20/0) 60
0(12,2) 8 (201001) (2/00/20/2) 120
Q(12.3) 4 (210010) (2/00/2 2/0) 120
Q(12.4) 0 (1t (2/02/02/0) 20
(010210) (2/20/20/0) 60
2012,5) -4 (111 (2/22/00/0) 12
(201001) (2/02/20/0) 60
J. Mater. Res., Vol. 1, No. 1, Jan/Feb 1986 25
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weak intensity. Our indexing method therefore uniquely
identifies the quasilattice parameter d,, in a way that is
quite equivalent to that chosen by Elser'” based on an
examination of the Fourier transform of the cut func-
tion along a systematic row. Because our method is
purely geometric and does not refer to any specific cut
function, it is in a sense more general.

In this paper we have taken for granted that the
symmetry is truly icosahedral. The choice of the cubic
axes for a coordinate system does not imply that we
believe that this is a cubic crystal, as has been suggested
by others.'®!” We will address this issue in a separate

paper.'®
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QUASIPERIODIC CRYSTALS - EXPERIMENTAL EVIDENCE

D. SHECHTMAN® (1}

Materials Science and Engineering, The Johns Hopkins
University. Baltimore, MD 21218, U.S.A.

Abatract- A review of the experimental evidence which rejects
the determination of the Icosahedral phase as periodic is
presented. The experiments discussed include various diffrac-
tion techniques for the study of the long range order as well
the methods to determine the local atomic arrangement.

I - INTRODUCTION

al phase (1), (2) has generated a great
deal of research activity. It is the fascination of being a part of
an emerging new field, which motivated investigators from several
disciplines to contribute about 150 articles in the first year. How-
ever, a certain amount of mainly passive scepticism still exists

within the ranks of crystallographers.

The discovery of the Icosahedr

Since the first X-ray diffraction Experiment by von Laue in 1912, all
crystals studied by various techniques could be defined as periodic.
Many structures were analysed to have rather complicated motifs and
large unit cells, which contain in several cases well over a thousand

atoms, (Frank-Kasper phases are a typical example).

could be shown to have periodic translational
symmetry. Therefore, a crystal which generates sharp diffraction
peaks was axiomed over the years to be periodic. This axiom which has
become a cornerstone in crystallography is not supported by the
mathematics of the nature of diffraction. ©On the contrary, 1t was
demonstrated and proved time and again that the Fourier transform of
almost periodic and quasiperiodic functions also generate sharp

peaks.

All these, however,

st, narrows down to the

The question whether quasiperiodic crystals exi
can form and

question whether quasiperiodic arrangement of atoms
whether it can be stable.

The mathematical as well as other theoretical and experimental tools,
to deal with quasiperiodic crystals, were available for quite some
time before the announcement of the discovery of the Icosahedral
phase, and these were put to use almost immediately following the
announcement.

————
.
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The experiments that revealed the exceptional nature of the
Icosahedral phase were repeated and this not only confirmed the first
results, but also expanded them and added evidence for quasiperiodi-
city 1n the Icosahedral phase and other phases (3)(4). The phase,
first found in several aluminum alloys (5) was later discovered 1n

other compositions (6).

The purpose of this article is to discuss experimental evidence which
rejects the possibility of explaining the structure of the Icosahedral
phase on principles of classical crystallography, thus creating the
foundation for the wunderstanding of the structure of quasiperiodic

crystals.

EXPERIMENTAL

There is no doubt that electron_microscopy., with 1its versatility and

wealth of experimental procedures, played a key role in the early
stages of the study of the Icosahedral phase and other quasiperiodic

structures.

The property that drew attention to the fivefold orientation in April
1982 was the very dark image of the Icosahedral grains which were
oriented with the fivefold axis parallel to the electron beam. The
Icosahedral phase diffracts electrons in an unusual way.

Next came the diffraction pattern (Fig.l), with well defined sharp
peaks and fivefold rotational symmetry. The pattern has more unique
features, the distances from the centrally transmitted beam to the
diffracted beams are related by various powers of the golden mean and
the intensity of the diffracted beams does not decay as a function of
the distance from the center. But, perhaps, the most intricate
observation was that the crystal, in different orientations, has more
such fivefnld diffraction patterns. The analysis of the symmetries of
the crystal lead to the composition of patterns shown in Fig.2 and to
the realization that the crystals possess Icosahedral symmetry. The
explanation of the previously unobserved set of symmetries could be
either by using the knowledge of traditional periodic crystallography
or by proposing something else and new.

Fig.l. Selected area diffraction Pattern taken from a single
Icosahedral Crystal (1).
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Fig.2. The sequence of selected area diffraction pattersn obtained
from one Icosahedral crystal at various tilt angles (1).

Periodic crystallography may suggest that each spot 1in the unique
patterns 1s formed by a contribution of several differently oriented
particles of a periodic phase, such as multiple twinning. To examine
this idea several experiments were carried out in the electron
microscope. The first is a set of dark field images obtained from
different diffracted beams 1n a two-beam condition (1). In each dark
field image the whole Icosahedral grain was illuminated, and down to
the resolution of a few nanometers, no twins can be observed. This
experiment was repeated since on various other Icosahedral phases,
some of which (such as several rapidly solidified Al-Mn-S1 alloys!) are
with much less strain contrast with the same results (7).

Convergent beam diffraction patterns were taken at the various
important orientations. This technique involves a conical electron
beam that illuminates a spot on the specimen, the diameter of which 1is
between 1.5nm to 20 nm. +The diffraction patterns obtained this way
are identical to the ones oLrerved by the selected area method., and
are similar to one another across the Icosahedral crystal. Such
selected area diffraction patterns were taken at various thickresses
of the specimen, and down to a few nanometers in thickness, indicating
that if, indeed, the diffraction pattern is a composite of several
patterns obtained from several periodic crystals, then these crystals

must be very small.

Perhaps, the most convincing set of experiments in the stuuy of the
structure of the Icosahedral phase is based upon lattice imaging. The
lattice imaging technique has been used extensively in the last decade
to study lattice defects. It has been demonstrated that the technique
can detect the fine structure of dislocation cores and that of many
kinds of boundaries, including microtwin boundaries (8). The
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technique was applied to the Icosahedral phase 1n several alloys (9)
revealing the atomic structure at different orientations. Even though
it is difficult to confirm a structural model based on these
observations, several facts are clear. The most important observation
is that no boundaries can be seen in the structure. The gquasiperiodic
sequence of planes is clearly seen, and the orientations of planes 1in
the 2-, 3- and 5-fold orientation is conspicuous. An optical
diffraction taken from the TEM plate to form a Fourier transform of
the image recreates the electron diffraction pattern. This result is
obtained even with a rather small aperture, i.e. with the diameter of
the area which contributes to the optical diffraction in the order of
several nanometers. The various rotational symmetries, including the
fivefold, are thus a fundamental property of the atomic order and do
not result from any composition of small periodic crystals, such as
microtwins.

X-ray diffraction has traditionally been a most powerful and precise
tool in the study of crystals. The technique was put to use in the
study of the quasiperiodic crystals, starting with <the Icosahedral
phase (1)(5)(10). The fit of the X-ray diffraction peaks to those of
the electron diffraction was confirmed, and the indexing of the
patterns followed soon (5)(11). Even though there is no dispute as to
the meaning of each peak among the various suggestions for indexing
languages, the 1ndexing techniques vary from one to the other. The
most fundamental of all is the one suggested by Cahn et al (11). It
is based upon a set of three orthogonal 2-fold axes and presents ar
easy and workable indexing system. Another important result of the
analysis of the X-ray diffraction patterns is the introduction of the
step necessary to prove, using diffraction, that a wsolid is quasi-
periodic.

Among the other results obtained by X-ray diffraction is the accurate
measurement of planar spacing, which is uot obtainable accuiately by
electron diffraction, and the introduction of indexed stereographic
projections for the Icosahedral phase (1l1). In general, the peaks
observed in all the X-ray studies are rather wide representing a
correlation length of 10-30nm. Numerous speculations as to the cause
of this width have been presented including local strain, faults and
uneven distribution of atomic constituents to name a few. This
guestion is unsettled at present and an agreed upon explanation is
still sought.

Neutron diffraction on powdered Icosahedral phase was also performed
on three alloy compositions (12). Peak positions were found at
i1dentical positions to those previously found by X-ray diffraction and
previously as produced by cuts and projections of a 6D cube with a
lattice parameter of about 0.65nm (see later in these proceedings).
The intensities of the neutron diffraction pattern provide information
on the chemical order of the Icosahedral phase by comparison to those
of the X-ray diffraction pattern. This is based upon the difference
between the structure factors characteristic of the two techniques,

which is vividly demonstrated for the Al-Mn system.

The local atomic structure of the Icosahedral phase was studied by
NGR, XAFS and NMR.

Shortly following the discovery of the Icosahedral phase Nuclear
Gamma-Ray Resonance (NGR) experiments were performed on Al- (Mn,Fe)
alloys (13). The NGR spectrum of an iron atom in the Icosahedral
phase is a probe of the local environment of that atom and the
technigue is most sensitive to the first one or two near-neighbor

shells. A detailed analysis of the spectra obtained from the
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Icosahedral structure shows that they can be fitted to a pair of
symmetric doublets, indicating two non-symmetric positions for the
1ron atom. It 1s assumed that the iron and manganese atoms occupy the
small site types and are distributed arbitrarily within the 3juasi-
periodic crystal. The results do not suggest a model, but reject any
model 1n which the manganese atom occupies a symmetric position.

In another study (14) the local atomic environment in the Icosahedral
measurements. The results which provide information that lead to a
structural model, demonstrate the power of this tool for the study of
the order of the 1Icosahedral phase. The model, detailed in these
proceedings, supports the randomly connected Icosahedra model
previously suggested (1) and suggests a structural unit which consists
of a cage of Mn atoms positioned on the vertices of an Icosahedran,
The model also suggests that the quasiperiodic crystals grow along the
threefold axis, which is consistent with previously reported optical
microscopy observations (10).

environment of the nuclei. 1In their study (15) both 55Mn and 27Al
nuclei were examined at room temperature. One of the conclusions of
this study supports the conclusion of the Mossbauer spectroscopy (NGR)
study (13a).

A direct observation of the atomic structure of the Iccrrhedral phase
was performed by Field_Ion_Microscopy (FIM) (16). The .- ults confirm
the long-range Icosahedral orientational order without t:.ns- lational
symmetry. The basic rotational symmetries were observed in real
space, and the results confirm the long-range Icosahedral

orientational order without translational symmetry.

In addition, a large number of apparent discontinuities were found.
Special attention was paid to the possibility of the presence of
twins, but no evidence was found for multiple twinning, and no twin
boundaries were observed. It should be noted that the FIM studies
were performed on a rapidly solidified ribbon of Al-12 at % Mn, which
is by nature heavily strained. A more suitable specimen for this
study would be a rapidly solidified ribbon of the Al-Mn-Si ternary
system which is composed of elongated strain free Icosahedral
crystals.

Based on the FIM, several laboratories have now developed an atom
probe which is potentially an important tool for probing the chemical
order of the Icosahedral phase, and for evaluating the models for its
atomic structure.

CONCLUSION

Many of the techniques for the study of the structure of solids were
applied to the Icosahedral phase. The long range order was determined
by X-ray, neutron and electron diffraction, and a very good fit was
obtained for a three dimensional gquasiperiodic arrangement of atoms.
The local order was probed by fieild ion microscopy, nuclear gamrma-ray
resonance, nuclear magnetic resonance and extended X-ray absorption
fine structure. At this stage the available information on the local
order should provide a model for the atomic arrangement both of the
Icosahedral phase in particular, and for quasi- periodic crystals in
general. Indeed, such models are propoved in these proceedings, and
hopefully an agreed upon model will emerge in the near future.
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COMMENTS AFTER THE D. SHECHTMAN TALK

M.V. JARIC.- I would like to make two comments. First, I would like ro
em,-hasize that SHECHTMAN's model of randomly packed icosahedra
shew.”ing edges, faces, or vertices, does, in fact, exhibit & unusual
kind of order - namely, the 1long-range icosahedral orientations)
order. Seccnd, I think that a selfconsistent definition of a clase of
(long-range positionally) ordered structures could be a physical one :
these are (infinite) structures which give rise to diffraction
patterns consisting of perfectly sharp bragg peaks. It would be, then,
an experimental task to recognize this ideal in real structures.
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Neutron Diffraction Studies of the Icosahedral Phase of Al-Mn Alloys

B. Mozer (+), J. W. Cahn (+), D. Gratias (++), and D. Shechtman (+++)

(+) Center for Material Sciences, NBS, Gaithersburg, MD 20899, U.S.A.
(++) C.E.C.M/C.N.R.S. 15 rue G. Urbain 94400-Vitry, France

(+*;) Dept. of Material Engineering, Israel Institute of Technalogy, Technion,

32000 Haifa, Israel and the Dept. of Materials Science and Engineering

Johns Hopkins Uuiversity, Baltimore, Maryland, U.S.A.

Abstract - Powder neutron diffraction studies were performed on three
icosahedral alloys of the aluminum manganese system containing 27, 30,
and 34 weight percent manganese. All peaks were found at the angles
consistent with the icosahedral indexing with a six-dimensional cubiec
lattice parameter of approrimately 0.65 nm that decreased with increasing
Mn content. The relative intensities differ significantly from those
found for X-rays. The intensities are not consistent with a quasilattice
consisting of the 3-dimensional Penrose tiling with a2 .46 nm edge length
along the 5-fold axis. It is cuisistent with a 1.0 nm edge along the 3-
fold axis quasilattice node separation.

I - INTRCDUCTION

Since the discovery of the icosahedral phase in rapidly solidified melt spun

‘ribbons of Al-Mn alloys /1,2/, a number of experimental techniques have been

used to determine the structure of these aperiodic systems. In the original
work, electron diffractior studies were made on small regions of the ribbon
where the icosahedral phase was singly oriented. Further studies showed the
presence of cther phases coexisting with the icosahedral phase./3,4 Depending
on the concentration of manganese, the cooling rate, hezt treatment, ete., one
can find the icosznedral phase, the c-aluminum phase, or the decagonal phase /5/
in many combinations. We report here on some powder neutron diffraction studies
of the aluminum manganese icosahedral phase since no large singly oriented
single phase specimens are available. We studied this phase using powdered
specimens ol several compositions of the alloys. Other powder diffraction
patterns were obtained for powders containing the iccsahedral phase and the
decagonal phase and for powders annealed to produce the eguilibrium orthorhombic

A16Mn.

I1 - SAMPLE PREPARATION

Melt spun ribbons were obtained (1) from each of these Al1-anx alloys where x
corresponded to 27 (2), 30, and 34 (3) weight percent of the pure starting

T7) We tnank Dr. A. Rabinkin of the Allied-Signal Corporation for providing us

these samples.
(2) Tnis corresponds to AluMn

(3) This corresponds to AléMn
Les Editions de Physique (1986) (Accepted for publication)
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materials . The ribbons were then gently powdered so as not to introduce
excessive strain and sieved to provide the neutron diffraction samples.

III - EXPERIMENTAL PROCEDURE

Neutron diffraction measurements were performed on the high resolution BT-1
powder diffractometer /6/ at the N3S 20-MWatt research reactor. The
diffractometer consists of 5 separate counters, separated by 20°, that can move
simultaneously about an axis at the sample position. The 5 counters cover an
angular range from 0° to 120° and for our experiments covered from 5° to 120°
scattering angle where each counter moved 35°. The wave length used for our
experiments was 1.546A provided by a copper monochromator. An oriented graphite
filter was used in the beam to remove higher order wave lengths contamination.
The resolution of the diffractometer varies over the scattering angle from 0.31°
at 5° scattering angle to a minimum of 0.22° from 40° to 70° and rises to 0.58°
at the largest scattering angle.

The powder to be studied is placed in a thin walled veznadium container which can
be fixed at the sample position. Vanadium was used since it does not contribnte
any structure to the diffraction patterns. Diffraction dzta was taken for each
powder in angular steps of 0.05° and for a given monitor count of the incoming
beam.

IV - RESULTS

Figure 1 shows a comparison of the diffraction data versus scattering angle for
the three alloys with manganese concentration inereasing from the top to the
Sottom graph. The lowest concentration manganese alluvy when melt spun under the
conditions for our experiment produces the icosahedral phase plus the f.c.c. a-
aluminum. The a-aluminum phase lines in our pattern are narrower than the peaks
of the icosahedral peaks but ¢o not completely reflect the instrumentzl
resolution. Their width could arise from particle size broadening or possible
hroadening caused by non-uniform concentration of Mn in the e-aluminum phzase.
The ilccszhedral lines although quite sharp compared to cther samples we have
examined are broadened significantly more than our resslution functicn. One
also nctes zn oscillatory background under the peaks of the icoszhedral phase.
This oscillatory background is reminiscent of the behavior of binary alloy
systems showing short rarge order or pcssibly the presence of an amorphous phase
in our system. No amorphous phzse wzs detected by TEM. An examination of the
background behavior at the smaller zangles seems to Indiczle a pattern similar to
short range order since the curve is tending upward away frcm zero. An
experiment is being designed to probe these smaller angles to attempt to further
clarify this point.

One sees in the neutron diffraction a slight shift in pesak positions versus the
manganese concentration. This has been observed by both electron and x-ray
diffraction./4/ With increasing manganese content there is a change in the
amount of other phases present; ¢ aluminum is reduced and the decagonal phase
appears. (Neither the A16Mn nor AluMn phases were observed.) These changes are

observed in the region from 22° to 45° in two theta but can be seen to cccur
over most of the pattern. We are attezpting to prepare a sample in the pure
decagonal phase and to measure its rneutron, electron and x-ray diffraction
patterns in order to analyze completely the diffraction curves with mixed
aperiodic phases.
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Fig. 1 - The uncorrected neutron scattering intensity of the 3 alloys,
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versus the scattering angle, 28. The vertical lines are the predicted positions
of the Qo series of icosahedrzl lines for all even values of N between 2 and

106.
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Figure 2 shows a comparison of a powder neutron diffraction pattern of the
fcosahedral phase with the X-ray diffraction pattern /7/ for a similar alloy.
The most interesting feature is the difference in the Intensities for the same
icosahedral peaks. Furthermore, many peaks are observed in the neutron
diffraction pattern that seem to be absent in the X-ray pattern, whereas, some
strong X-ray peaks are very weak in the neutron pattern. This striking
difference in intensity comes from chemical order and the difference in phase of
the neutron scattering amplitudes of the manganese atoms which have a negative
neutron scattering length relative to that of aluminum.

In the preliminary analysis of the neutron diffraction data for the 27% alloy,
we obtained the integrated intensity under all icoszhedral peaks positions
calculated from the index method we discuss later. To obtain the integrated
intensity we did not attempt at this point to fit peak profiles witn assumed
mathematical forms but subtracted a smooth background from each peak and
numerically integrated the resultant intensity. For some positions the
intensity differed little from background. These were listed as zero intensity
and utilized because they too contain information. In the case of the few
overlapping peaks, where the separation could be clearly made, we adjusted each
peak's intensity to give it a smooth symmetrical curve whcse summed intensity
agreed with that observed. Peaks that overlapped with those of other phases
were not measured. In order to compare the experimental intensities with our
model, we corrected the above integrated intensities by multiplying it by

sinze cos8, the applicable Lorentz factor for neutron scattering, where 8 is
one-half the scattering angle. Finzlly for a comparison with our model we
divided each integrated intensity with its multiplicity as determined by the
model and normalized these intensities so that the largest one would be unity.
For those cases where several nonequivalent peaks had identical 8, the intensity
was divided by the sum of the multiplicities.
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Fig. 2 - A comparison of the uncorrected neutron scattering intensities, top, to
the scattering intensities for x-rays /7/ versus Q = Unsin®/A where 8 is one-
half the scattering angle and A is the wave length of the radiation used. The
two curves in the neutron data near Q=2.3 reflect the overlapping range of
the deteclors
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V - DISCUSSION

Two aspects of the neutron diffraction results will be discussed; peak positions
and how this relates to the icosahedral symmetry, and intensity and hcw this
confirms the emerging model of a structure of parallel large icosahedral motifs

stacked aperiodically along their 3-fold axes.

VI - COORDINATE SYSTEMS

The geometries of both the direct and reciprocal spaces in three dimensions are
conveniently described in terms of a Cartesian coordinate system aligned with
one set of three mutually orthogonal 2-fold axes which occur in icosahedral
symmetry./8/ Each of the three componants of a quasilattice or reciprocal
quasilattice vector will be described in terms of two integers e.g., h and h',
the magnitude of the component is h + h'r where

1 = 2Cos(1/5) = (1 +VB)/2 = 1.618034.

A reflection Q is indexed with six integers (h + h't, kK * k'1, 1 + 1'7) which
Wwill be written (h/h' k/k' 1/1'). Similarly & translation vector X will be
written (u/u' u/u' w/w'). These six integers can also ba related to components

(x1x2.. .x6) of a six-dimensional lattice vector in 26 or components (n‘n2...n6)

¥
of a reciprocal lattice vector in Z 2 by the equations:

h -. n,- n, h' = n2+ ns
k-n3- ng k! =n1+ ny (1)
1 =n,~ n5 1' = n3+ ne

with similar equztions relating u,u’'...w' to the X

Equation (1) can be considered to define a projection af 26 onto a three
dimensional plane. It will be convenient to let the (100000) vectors in 26 and

*

YA g have a unit length. Then the corresponding vectors in R3 along the 5-fold
axis (1/0 0/1 0/0) will have a projected length 1/¥2. Wwe therefore normalize
all three-dimensional vectors by a factor of Y2(2 + 1). 1In our previous

paper /8/ the vector (1/0 0/0 0/0) in R3 was chosen to have unit length. As a
result of the redefinition of a unit length formulas for lengths in this paper
differ from that of the previous paper by a factor of 2(2+1).

Q= 1/‘]2(2 + 1) ((h+h'o)i+ (k+ k't)j ¢+ (1 + 1'"1)k)
Xx=1/92(2 + 1) ((u+uDi+ (k+X%k'1)J+*(1+1'1)k)

Note that X (1/0 0/1 0/0)-Z(1/0 0/1 0/0) = 1/2. These vectors which were

6
reciprocal to each other in Z~ have been foreshortened by projection and are no
longer reciprocal to each other. To convert these to dimensional quantities x
and q we will use the six-dimensional cubic lattice parameter A an reciprocal

*
lattice parameter A =1/A and let

x = AX
*
qQ=AQ (2)
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For powder diffraction we need only the magnitudes of these vectors. Because

12- 1 + ¢ these become

QZ- (N + MT)/Z(Z + ‘[) XZ- (S + T-[)/2(2 + T) (3)
and where
2 2
N 2‘z:ni S Zin
=+ ntle kB k'Zs 120 102 - w2 urle V2o vr2e B 2 (i)

M= h'2+ k'2+ l'2+ 2(hht + kk' +11') T = u'2+ v'2+ w'2+ 2(uu'+ vww' + ww') (5)

Hence N and S are always even. Furthermore if N(or S) is divisible by 4, so is
M(or T). If N(or S) is of the form 4m + 2, M(or T) is of the form 4m + 1. In

addition we have
=N/t < M <Nt -8/t <T < S1. (6)
Equation 4 states that all vectors with the same value of N (or S) lie on the

* *
same sphere in Z . (or 26). The distance Qc that a reflection in 2 P is from

tne icosanedral cut plane defined by equations (1) 1s given by
2
Q - (Nt - M)/72(2 + 1) (1)

Taus the largest pcssible value of M for a given N will have the smallest Qc and
usually the greatest intensity. This largest value of M is called MO. The
corresponding value of Q is called QO and is a one parameter sequence of
reflecticns.

T N=ln

N + 1(1 + ul_”";‘_‘ ) N=ln+2

2(2 + 1) Q - (83

where]_XJ is the largest integer in X and the corresponding values of Qc are

eiNT N+t ) -
(u 1 n N =l
N1—1_LN1—1J) i}

141( m m N n + 2

. *
To determine multiplicities of the reflections all nodes in Z 8 for nj_.g 7 were

2
2(2+1) ro =

grouped by their length Q and counted.

*6 *l@'.‘i
Table 1 lists for each N, the largest vzlue of M, the indexes in Z and R 7,
the multiplicities and the values of QO and Qc' This same table can be used to

find thcse vectors in Z6 for each S thz are closest to being parallel to the
3

plane R™.
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L]

L
Ak
L)
L]
L1
L]
LI
L}
LL]
L)
A
A
L)
Ak
L]
L1
Ak
LY

Q Paral.

0.00000
0.70711
1.20300
1.68572
1.94650
2.07095
2.28B25
2.28825
2.57497
2.75276
2.9953s5
3.14950
3.22790
3.37143
3.37143
3.57225
3.70246
3.70246
3.76938

€.41285
6.41285
6.41285
6.52066
6.52066
6.5928%
6.59289
6.6578]
6.69781
6.76815
6.80499
€.80499
6.80455
6.87424
6.97492
7.04250
7.04250
7.04250
7.14081
7.20683
7.24144
7.30654
7.30654
7.30654
7.40135
7.40135
7.46507
T.49R4R

and in perpendicular Space;

g Perp.
0.00000
0.70711
0.74350
0.3979%4
0.45951
0.84329
0.67403
0.87403
0.60787
0.649B4
0.166%3
0.28399
0.76200
0.79589
0.79589
0.48B889
0.54018
0.54018
0.889%83
0.8B9B3
¢.B86983
0.519%01
0.91901
0.67094
0.70918
0.32942
0.40162
0.81320
0.84504
0.56538
0.56538
0.61028
0.93405
0.93405
0.17552
0.72856
0.72B56
0.76393
0.76393
0.43493
0.49189
0.4918%
0.86137
0.86137
0.89}48
0.8%148
0.67270
0.6.270
0.67312
0.24222
0.3338S
0.333es
0.78196
0.7B196
0.81501
0.81501
0.51944
0.567%8
0.567cg
3.90Lu7
0.50697
0.93562
0.93562
0.93562
0.93562
0.68351
2.69351
0.73058
0.73058
0.3732¢6
0.37326
0.43830
0.83193
0.83193
0.83193
0.86307
0.59200
0.63502
0.63502
0.63502
0.09394
0.24B22
0.74941
0.78384
0.783B4
0.783€
0.469C1
0.46901
0.52226
0. A7I8Q7

and/or reflections of the 1coséhedral quasilattices indexed
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VII - PEZAK POSITIONS

In figure 1, we compare the experimental diffraction curves with a series of
vertical lines at the value of Q_ from N = 2 to N = 106 with none omitted using

A = 0.65 nm. Every strong peak attributed to the icosahedral phase coincides
with such a position. A few weak peaks were found to line up with the next
lower value of M, M1 - Mo - b, Except for these weak peaks, all peaks fall at

zngles determined by a single lattice parameter A=0.46nm and one other number N
wi..ch takes on the value of all positive even integers. In a sense Q (N) is the
)

icosahedral equivalent of the crystallographic rules which determine for powder
patterns of crystalline materials where the lines are to be found. As for
erystalline materials it has a beginning at N = 2, and extends monotonically to
higher angles. Strictly any list of all peaks must involve two parameters N and
¥, and because of the {rrational number 1, Q can come infinitesinally close to
any angle. Only the main QO sequence has high intensity. This is similar to

wnat occurs with incommensurately modulated phases. However, the strong peaks
from an incommensurately uodulated phase conform to a periodic lattice.

VIII - INTZNSITY

We find that the intensity of neutron diffraction differs significantly from
that obtained with X-rays. This indicates a degree of chemical ordering.
The intensities are not consistent witha concept of a simple superlattice.
since there is no systematic intensity difference correlated with zby parity
rules on N. In any ordering scheme the N=lu+2 peaks would be superlattice peaks
cinece they all would disappear in any structure that belonged to an icosahedral
super group. As in ordinary cryustallography, the positions of the reflections
depend entirely on the six dimensional lattice and its parameter, only the
intensity 1s affected by other factors. Because the icosahedral phase exists
cver a range of compesitions, as verified by the shift in lattice parameter,
there must be substitutions of manganese and aluminum for each other and a
certain degree of chemical disorder. 1In the simplest models, identical single
scatterers concentrated on a quasilattice,/9,10/ neutron and xray diffraction
would give similar intensities, which would be a known function only of Qc.

This kind of model is clearly ruled out. More complicated models, involving a
cuzsilattice decorated with identical motifs give rise to a factorable structure
factor in which one of the factors gives information about possible
cuasilattices. This will be discussed next.

VIII - INFERENCE ABOUT THE CUT FUNCTION

3

A quasiperiodic arrangement of points in R™ with icosahedral symmetry is easily

obtained by projecting all lattice nodes in Z6 within a symmetric by a
neighborhood of the icoszhedral plane and projecting them onto the icosahedral
plane. The shape of the neighborhood must conform to icosahzdral symmetry. The
size and shape of the neighborhood is called the cut funciion. It determines
the density and arrangement of quasilattice nodes. It is worth noting that no
points in the quasilattice will be separated by X if Xc can not be fit into the

cut function. The shape and size of the cut function can be adjusted to
eliminate specific distances in the quasilettice. If each quasilattice node is
decorated with the same atomic motif then the structure factor of such a
structure is the product of two factors, an intrinsic quasilattice structure
factor and one derived from the arrangement of atoms in the motif. The former
depends entirely on the cut function. The separation into two factors is an
approximation. In the ideal structure there is no quasilattice lattice of
points which have strictly identical environments. We assume an approximate
repetition of local environment, and use the obrerved intensity to make
inferences about the spacing of quasilattice nodes form the size c¢f the cut
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function. If we assume that the cut function is a sphere we can obtain the
quasilattice structure factor F which is only a function of the dimensionless

cut radius R
. 3 en
F = 3(sin¢/¢~° = cos¢/¢ ) (10)
where

¢ = ZvQcR

F has zeros at ¢ = 4,49, 7.72...

1,0 )
0,9
0,8
0,7
0,6
0,5

- 0,4

INTENSITY

0,3

- 40
0,2 o O\ %g 24
52 \ 3 O
0,1 — \ . O — —
\ .-04 120
\// ~ 12
0 b—mo—70—72:80 80 254-14 76 62 80 8250 27866164 42  ——
18 N
70 38 B0 6 22
| l | | | | [ | | N . | | | i | 1 1

0 02 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4 3,6

VTINT-M)

Fig. 3 - The square root of the relative intensity corrected for multiplicity
and the Lorentz factor versus 2(2+1) Qc' Both tre Qo and Q1 series are shown.

The value of N is shown for each reflection. Wnere no peak was observed the
intensity was set to zero. The solid and dashed curves are quasilattice
structure factors for spherical cuts for R=0.704 and 1.14 respectively. The
latter is the sphere with the same volume as the cut figure which gives the

three-dimensional Penrose tiling.
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Fig. 3 plots intensity vs. t(Nt-M) which is Qc 2(2+t). The quasilattice
structure factor F is plotted for two values of the dimensionless radius of a
spherical cut function R=1.14 and R=0.704. The former has a node in Fig. 3 at
1.65, the other at 2.73. The larger R is a sphere of the size of the tri
jicoutahedron that gives the quasilattice of the 3-dim Penrose tiling. For this
size the principal node spacing is 0.46nm along the 5-fold axis, corresponding
to S=2, T=1, although it also admits a few of the short diagcnzls of the oblate
tile, S=6 T=-3. Because of the many Iintense reflections near the node of this
structure factor we conclude that this is not the size of the cut funection, that
these distances are not quasilattice vectors, and that this the observed
quasilattice is not represented by the 3-dimensional Penrose filing. The
smaller value of R does indeed give a node at 2.73 where there are no intense
reflections. This size cut function rules out S=2 and S=4 and all S=6 except
T=9, which becomes the shortest distance allowed and is 1.096nn along the 3-fold
axis. This is indeed the caliper diameter of a Mackay icosahesdron /11/ along
its three-fold axis and figures in the model proposed by Henley and Elser/12/,
Guyot and Audier,/13/ Ma, Stern, and EBouldin /14/. In such a model parallel
Mackay icosahedra are placed on nodes separated by 1.096nm zlong their common
three-fold axis forming distorted octahedra where they Join. No nodes are
closer than this distance. In another paper we describe the construction of a
cut-figure which will give a quasilattice with these properties.
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